public class DataFrameReader
extends Object
implements org.apache.spark.internal.Logging
Dataset
from external storage systems (e.g. file systems,
key-value stores, etc). Use SparkSession.read
to access this.
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
csv(Dataset<String> csvDataset)
Loads an
Dataset[String] storing CSV rows and returns the result as a DataFrame . |
Dataset<Row> |
csv(scala.collection.Seq<String> paths)
Loads CSV files and returns the result as a
DataFrame . |
Dataset<Row> |
csv(String... paths)
Loads CSV files and returns the result as a
DataFrame . |
Dataset<Row> |
csv(String path)
Loads a CSV file and returns the result as a
DataFrame . |
DataFrameReader |
format(String source)
Specifies the input data source format.
|
Dataset<Row> |
jdbc(String url,
String table,
java.util.Properties properties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table and connection properties. |
Dataset<Row> |
jdbc(String url,
String table,
String[] predicates,
java.util.Properties connectionProperties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table using connection properties. |
Dataset<Row> |
jdbc(String url,
String table,
String columnName,
long lowerBound,
long upperBound,
int numPartitions,
java.util.Properties connectionProperties)
Construct a
DataFrame representing the database table accessible via JDBC URL
url named table. |
Dataset<Row> |
json(Dataset<String> jsonDataset)
Loads a
Dataset[String] storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame . |
Dataset<Row> |
json(JavaRDD<String> jsonRDD)
Deprecated.
Use json(Dataset[String]) instead. Since 2.2.0.
|
Dataset<Row> |
json(RDD<String> jsonRDD)
Deprecated.
Use json(Dataset[String]) instead. Since 2.2.0.
|
Dataset<Row> |
json(scala.collection.Seq<String> paths)
Loads JSON files and returns the results as a
DataFrame . |
Dataset<Row> |
json(String... paths)
Loads JSON files and returns the results as a
DataFrame . |
Dataset<Row> |
json(String path)
Loads a JSON file and returns the results as a
DataFrame . |
Dataset<Row> |
load()
Loads input in as a
DataFrame , for data sources that don't require a path (e.g. |
Dataset<Row> |
load(scala.collection.Seq<String> paths)
Loads input in as a
DataFrame , for data sources that support multiple paths. |
Dataset<Row> |
load(String... paths)
Loads input in as a
DataFrame , for data sources that support multiple paths. |
Dataset<Row> |
load(String path)
Loads input in as a
DataFrame , for data sources that require a path (e.g. |
DataFrameReader |
option(String key,
boolean value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
double value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
long value)
Adds an input option for the underlying data source.
|
DataFrameReader |
option(String key,
String value)
Adds an input option for the underlying data source.
|
DataFrameReader |
options(scala.collection.Map<String,String> options)
(Scala-specific) Adds input options for the underlying data source.
|
DataFrameReader |
options(java.util.Map<String,String> options)
Adds input options for the underlying data source.
|
Dataset<Row> |
orc(scala.collection.Seq<String> paths)
Loads ORC files and returns the result as a
DataFrame . |
Dataset<Row> |
orc(String... paths)
Loads ORC files and returns the result as a
DataFrame . |
Dataset<Row> |
orc(String path)
Loads an ORC file and returns the result as a
DataFrame . |
Dataset<Row> |
parquet(scala.collection.Seq<String> paths)
Loads a Parquet file, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String... paths)
Loads a Parquet file, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String path)
Loads a Parquet file, returning the result as a
DataFrame . |
DataFrameReader |
schema(String schemaString)
Specifies the schema by using the input DDL-formatted string.
|
DataFrameReader |
schema(StructType schema)
Specifies the input schema.
|
Dataset<Row> |
table(String tableName)
Returns the specified table/view as a
DataFrame . |
Dataset<Row> |
text(scala.collection.Seq<String> paths)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<Row> |
text(String... paths)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<Row> |
text(String path)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<String> |
textFile(scala.collection.Seq<String> paths)
Loads text files and returns a
Dataset of String. |
Dataset<String> |
textFile(String... paths)
Loads text files and returns a
Dataset of String. |
Dataset<String> |
textFile(String path)
Loads text files and returns a
Dataset of String. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public Dataset<Row> csv(String... paths)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following CSV-specific options to deal with CSV files:
sep
(default ,
): sets a separator for each field and value. This separator can be one
or more characters.encoding
(default UTF-8
): decodes the CSV files by the given encoding
type.quote
(default "
): sets a single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not null
but an empty string. This behaviour is different from
com.databricks.spark.csv
.escape
(default \
): sets a single character used for escaping quotes inside
an already quoted value.charToEscapeQuoteEscaping
(default escape
or \0
): sets a single character used for
escaping the escape for the quote character. The default value is escape character when escape
and quote characters are different, \0
otherwise.comment
(default empty string): sets a single character used for skipping lines
beginning with this character. By default, it is disabled.header
(default false
): uses the first line as names of columns.enforceSchema
(default true
): If it is set to true
, the specified or inferred schema
will be forcibly applied to datasource files, and headers in CSV files will be ignored.
If the option is set to false
, the schema will be validated against all headers in CSV files
in the case when the header
option is set to true
. Field names in the schema
and column names in CSV headers are checked by their positions taking into account
spark.sql.caseSensitive
. Though the default value is true, it is recommended to disable
the enforceSchema
option to avoid incorrect results.inferSchema
(default false
): infers the input schema automatically from data. It
requires one extra pass over the data.samplingRatio
(default is 1.0): defines fraction of rows used for schema inferring.ignoreLeadingWhiteSpace
(default false
): a flag indicating whether or not leading
whitespaces from values being read should be skipped.ignoreTrailingWhiteSpace
(default false
): a flag indicating whether or not trailing
whitespaces from values being read should be skipped.nullValue
(default empty string): sets the string representation of a null value. Since
2.0.1, this applies to all supported types including the string type.emptyValue
(default empty string): sets the string representation of an empty value.nanValue
(default NaN
): sets the string representation of a non-number" value.positiveInf
(default Inf
): sets the string representation of a positive infinity
value.negativeInf
(default -Inf
): sets the string representation of a negative infinity
value.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.maxColumns
(default 20480
): defines a hard limit of how many columns
a record can have.maxCharsPerColumn
(default -1
): defines the maximum number of characters allowed
for any given value being read. By default, it is -1 meaning unlimited lengthunescapedQuoteHandling
(default STOP_AT_DELIMITER
): defines how the CsvParser
will handle values with unescaped quotes.
STOP_AT_CLOSING_QUOTE
: If unescaped quotes are found in the input, accumulate
the quote character and proceed parsing the value as a quoted value, until a closing
quote is found.BACK_TO_DELIMITER
: If unescaped quotes are found in the input, consider the value
as an unquoted value. This will make the parser accumulate all characters of the current
parsed value until the delimiter is found. If no
delimiter is found in the value, the parser will continue accumulating characters from
the input until a delimiter or line ending is found.STOP_AT_DELIMITER
: If unescaped quotes are found in the input, consider the value
as an unquoted value. This will make the parser accumulate all characters until the
delimiter or a line ending is found in the input.STOP_AT_DELIMITER
: If unescaped quotes are found in the input, the content parsed
for the given value will be skipped and the value set in nullValue will be produced
instead.RAISE_ERROR
: If unescaped quotes are found in the input, a TextParsingException
will be thrown.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing. It supports the following case-insensitive modes. Note that Spark tries
to parse only required columns in CSV under column pruning. Therefore, corrupt records
can be different based on required set of fields. This behavior can be controlled by
spark.sql.csv.parser.columnPruning.enabled
(enabled by default).
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
.
To keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have
the field, it drops corrupt records during parsing. A record with less/more tokens
than schema is not a corrupted record to CSV. When it meets a record having fewer
tokens than the length of the schema, sets null
to extra fields. When the record
has more tokens than the length of the schema, it drops extra tokens.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.multiLine
(default false
): parse one record, which may span multiple lines.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing. Maximum length is 1 character.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- (undocumented)public Dataset<Row> csv(String path)
DataFrame
. See the documentation on the
other overloaded csv()
method for more details.
path
- (undocumented)public Dataset<Row> csv(Dataset<String> csvDataset)
Dataset[String]
storing CSV rows and returns the result as a DataFrame
.
If the schema is not specified using schema
function and inferSchema
option is enabled,
this function goes through the input once to determine the input schema.
If the schema is not specified using schema
function and inferSchema
option is disabled,
it determines the columns as string types and it reads only the first line to determine the
names and the number of fields.
If the enforceSchema is set to false
, only the CSV header in the first line is checked
to conform specified or inferred schema.
csvDataset
- input Dataset with one CSV row per recordheader
option is set to true
when calling this API, all lines same with
the header will be removed if exists.
public Dataset<Row> csv(scala.collection.Seq<String> paths)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following CSV-specific options to deal with CSV files:
sep
(default ,
): sets a separator for each field and value. This separator can be one
or more characters.encoding
(default UTF-8
): decodes the CSV files by the given encoding
type.quote
(default "
): sets a single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not null
but an empty string. This behaviour is different from
com.databricks.spark.csv
.escape
(default \
): sets a single character used for escaping quotes inside
an already quoted value.charToEscapeQuoteEscaping
(default escape
or \0
): sets a single character used for
escaping the escape for the quote character. The default value is escape character when escape
and quote characters are different, \0
otherwise.comment
(default empty string): sets a single character used for skipping lines
beginning with this character. By default, it is disabled.header
(default false
): uses the first line as names of columns.enforceSchema
(default true
): If it is set to true
, the specified or inferred schema
will be forcibly applied to datasource files, and headers in CSV files will be ignored.
If the option is set to false
, the schema will be validated against all headers in CSV files
in the case when the header
option is set to true
. Field names in the schema
and column names in CSV headers are checked by their positions taking into account
spark.sql.caseSensitive
. Though the default value is true, it is recommended to disable
the enforceSchema
option to avoid incorrect results.inferSchema
(default false
): infers the input schema automatically from data. It
requires one extra pass over the data.samplingRatio
(default is 1.0): defines fraction of rows used for schema inferring.ignoreLeadingWhiteSpace
(default false
): a flag indicating whether or not leading
whitespaces from values being read should be skipped.ignoreTrailingWhiteSpace
(default false
): a flag indicating whether or not trailing
whitespaces from values being read should be skipped.nullValue
(default empty string): sets the string representation of a null value. Since
2.0.1, this applies to all supported types including the string type.emptyValue
(default empty string): sets the string representation of an empty value.nanValue
(default NaN
): sets the string representation of a non-number" value.positiveInf
(default Inf
): sets the string representation of a positive infinity
value.negativeInf
(default -Inf
): sets the string representation of a negative infinity
value.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.maxColumns
(default 20480
): defines a hard limit of how many columns
a record can have.maxCharsPerColumn
(default -1
): defines the maximum number of characters allowed
for any given value being read. By default, it is -1 meaning unlimited lengthunescapedQuoteHandling
(default STOP_AT_DELIMITER
): defines how the CsvParser
will handle values with unescaped quotes.
STOP_AT_CLOSING_QUOTE
: If unescaped quotes are found in the input, accumulate
the quote character and proceed parsing the value as a quoted value, until a closing
quote is found.BACK_TO_DELIMITER
: If unescaped quotes are found in the input, consider the value
as an unquoted value. This will make the parser accumulate all characters of the current
parsed value until the delimiter is found. If no
delimiter is found in the value, the parser will continue accumulating characters from
the input until a delimiter or line ending is found.STOP_AT_DELIMITER
: If unescaped quotes are found in the input, consider the value
as an unquoted value. This will make the parser accumulate all characters until the
delimiter or a line ending is found in the input.STOP_AT_DELIMITER
: If unescaped quotes are found in the input, the content parsed
for the given value will be skipped and the value set in nullValue will be produced
instead.RAISE_ERROR
: If unescaped quotes are found in the input, a TextParsingException
will be thrown.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing. It supports the following case-insensitive modes. Note that Spark tries
to parse only required columns in CSV under column pruning. Therefore, corrupt records
can be different based on required set of fields. This behavior can be controlled by
spark.sql.csv.parser.columnPruning.enabled
(enabled by default).
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
.
To keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have
the field, it drops corrupt records during parsing. A record with less/more tokens
than schema is not a corrupted record to CSV. When it meets a record having fewer
tokens than the length of the schema, sets null
to extra fields. When the record
has more tokens than the length of the schema, it drops extra tokens.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.multiLine
(default false
): parse one record, which may span multiple lines.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing. Maximum length is 1 character.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- (undocumented)public DataFrameReader format(String source)
source
- (undocumented)public Dataset<Row> jdbc(String url, String table, java.util.Properties properties)
DataFrame
representing the database table accessible via JDBC URL
url named table and connection properties.
url
- (undocumented)table
- (undocumented)properties
- (undocumented)public Dataset<Row> jdbc(String url, String table, String columnName, long lowerBound, long upperBound, int numPartitions, java.util.Properties connectionProperties)
DataFrame
representing the database table accessible via JDBC URL
url named table. Partitions of the table will be retrieved in parallel based on the parameters
passed to this function.
Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems.
url
- JDBC database url of the form jdbc:subprotocol:subname
.table
- Name of the table in the external database.columnName
- the name of a column of numeric, date, or timestamp type
that will be used for partitioning.lowerBound
- the minimum value of columnName
used to decide partition stride.upperBound
- the maximum value of columnName
used to decide partition stride.numPartitions
- the number of partitions. This, along with lowerBound
(inclusive),
upperBound
(exclusive), form partition strides for generated WHERE
clause expressions used to split the column columnName
evenly. When
the input is less than 1, the number is set to 1.connectionProperties
- JDBC database connection arguments, a list of arbitrary string
tag/value. Normally at least a "user" and "password" property
should be included. "fetchsize" can be used to control the
number of rows per fetch and "queryTimeout" can be used to wait
for a Statement object to execute to the given number of seconds.public Dataset<Row> jdbc(String url, String table, String[] predicates, java.util.Properties connectionProperties)
DataFrame
representing the database table accessible via JDBC URL
url named table using connection properties. The predicates
parameter gives a list
expressions suitable for inclusion in WHERE clauses; each one defines one partition
of the DataFrame
.
Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems.
url
- JDBC database url of the form jdbc:subprotocol:subname
table
- Name of the table in the external database.predicates
- Condition in the where clause for each partition.connectionProperties
- JDBC database connection arguments, a list of arbitrary string
tag/value. Normally at least a "user" and "password" property
should be included. "fetchsize" can be used to control the
number of rows per fetch.public Dataset<Row> json(String... paths)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
primitivesAsString
(default false
): infers all primitive values as a string typeprefersDecimal
(default false
): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(default false
): ignores Java/C++ style comment in JSON recordsallowUnquotedFieldNames
(default false
): allows unquoted JSON field namesallowSingleQuotes
(default true
): allows single quotes in addition to double quotes
allowNumericLeadingZeros
(default false
): allows leading zeros in numbers
(e.g. 00012)allowBackslashEscapingAnyCharacter
(default false
): allows accepting quoting of all
character using backslash quoting mechanismallowUnquotedControlChars
(default false
): allows JSON Strings to contain unquoted
control characters (ASCII characters with value less than 32, including tab and line feed
characters) or not.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
. To
keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the
field, it drops corrupt records during parsing. When inferring a schema, it implicitly
adds a columnNameOfCorruptRecord
field in an output schema.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.multiLine
(default false
): parse one record, which may span multiple lines,
per fileencoding
(by default it is not set): allows to forcibly set one of standard basic
or extended encoding for the JSON files. For example UTF-16BE, UTF-32LE. If the encoding
is not specified and multiLine
is set to true
, it will be detected automatically.lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.samplingRatio
(default is 1.0): defines fraction of input JSON objects used
for schema inferring.dropFieldIfAllNull
(default false
): whether to ignore column of all null values or
empty array/struct during schema inference.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoveryallowNonNumericNumbers
(default true
): allows JSON parser to recognize set of
"Not-a-Number" (NaN) tokens as legal floating number values:
+INF
for positive infinity, as well as alias of +Infinity
and Infinity
.
-INF
for negative infinity), alias -Infinity
.
NaN
for other not-a-numbers, like result of division by zero.
paths
- (undocumented)public Dataset<Row> json(String path)
DataFrame
.
See the documentation on the overloaded json()
method with varargs for more details.
path
- (undocumented)public Dataset<Row> json(scala.collection.Seq<String> paths)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
primitivesAsString
(default false
): infers all primitive values as a string typeprefersDecimal
(default false
): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(default false
): ignores Java/C++ style comment in JSON recordsallowUnquotedFieldNames
(default false
): allows unquoted JSON field namesallowSingleQuotes
(default true
): allows single quotes in addition to double quotes
allowNumericLeadingZeros
(default false
): allows leading zeros in numbers
(e.g. 00012)allowBackslashEscapingAnyCharacter
(default false
): allows accepting quoting of all
character using backslash quoting mechanismallowUnquotedControlChars
(default false
): allows JSON Strings to contain unquoted
control characters (ASCII characters with value less than 32, including tab and line feed
characters) or not.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
. To
keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the
field, it drops corrupt records during parsing. When inferring a schema, it implicitly
adds a columnNameOfCorruptRecord
field in an output schema.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.multiLine
(default false
): parse one record, which may span multiple lines,
per fileencoding
(by default it is not set): allows to forcibly set one of standard basic
or extended encoding for the JSON files. For example UTF-16BE, UTF-32LE. If the encoding
is not specified and multiLine
is set to true
, it will be detected automatically.lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.samplingRatio
(default is 1.0): defines fraction of input JSON objects used
for schema inferring.dropFieldIfAllNull
(default false
): whether to ignore column of all null values or
empty array/struct during schema inference.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoveryallowNonNumericNumbers
(default true
): allows JSON parser to recognize set of
"Not-a-Number" (NaN) tokens as legal floating number values:
+INF
for positive infinity, as well as alias of +Infinity
and Infinity
.
-INF
for negative infinity), alias -Infinity
.
NaN
for other not-a-numbers, like result of division by zero.
paths
- (undocumented)public Dataset<Row> json(JavaRDD<String> jsonRDD)
JavaRDD[String]
storing JSON objects (JSON
Lines text format or newline-delimited JSON) and returns the result as
a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonRDD
- input RDD with one JSON object per recordpublic Dataset<Row> json(RDD<String> jsonRDD)
RDD[String]
storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonRDD
- input RDD with one JSON object per recordpublic Dataset<Row> json(Dataset<String> jsonDataset)
Dataset[String]
storing JSON objects (JSON Lines
text format or newline-delimited JSON) and returns the result as a DataFrame
.
Unless the schema is specified using schema
function, this function goes through the
input once to determine the input schema.
jsonDataset
- input Dataset with one JSON object per recordpublic Dataset<Row> load(String... paths)
DataFrame
, for data sources that support multiple paths.
Only works if the source is a HadoopFsRelationProvider.
paths
- (undocumented)public Dataset<Row> load()
DataFrame
, for data sources that don't require a path (e.g. external
key-value stores).
public Dataset<Row> load(String path)
DataFrame
, for data sources that require a path (e.g. data backed by
a local or distributed file system).
path
- (undocumented)public Dataset<Row> load(scala.collection.Seq<String> paths)
DataFrame
, for data sources that support multiple paths.
Only works if the source is a HadoopFsRelationProvider.
paths
- (undocumented)public DataFrameReader option(String key, String value)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, boolean value)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, long value)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
key
- (undocumented)value
- (undocumented)public DataFrameReader option(String key, double value)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
key
- (undocumented)value
- (undocumented)public DataFrameReader options(scala.collection.Map<String,String> options)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
options
- (undocumented)public DataFrameReader options(java.util.Map<String,String> options)
All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option.
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
options
- (undocumented)public Dataset<Row> orc(String... paths)
DataFrame
.
You can set the following ORC-specific option(s) for reading ORC files:
mergeSchema
(default is the value specified in spark.sql.orc.mergeSchema
): sets whether
we should merge schemas collected from all ORC part-files. This will override
spark.sql.orc.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- input pathspublic Dataset<Row> orc(String path)
DataFrame
.
path
- input pathpublic Dataset<Row> orc(scala.collection.Seq<String> paths)
DataFrame
.
You can set the following ORC-specific option(s) for reading ORC files:
mergeSchema
(default is the value specified in spark.sql.orc.mergeSchema
): sets whether
we should merge schemas collected from all ORC part-files. This will override
spark.sql.orc.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- input pathspublic Dataset<Row> parquet(String... paths)
DataFrame
.
You can set the following Parquet-specific option(s) for reading Parquet files:
mergeSchema
(default is the value specified in spark.sql.parquet.mergeSchema
): sets
whether we should merge schemas collected from all Parquet part-files. This will override
spark.sql.parquet.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- (undocumented)public Dataset<Row> parquet(String path)
DataFrame
. See the documentation
on the other overloaded parquet()
method for more details.
path
- (undocumented)public Dataset<Row> parquet(scala.collection.Seq<String> paths)
DataFrame
.
You can set the following Parquet-specific option(s) for reading Parquet files:
mergeSchema
(default is the value specified in spark.sql.parquet.mergeSchema
): sets
whether we should merge schemas collected from all Parquet part-files. This will override
spark.sql.parquet.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- (undocumented)public DataFrameReader schema(StructType schema)
schema
- (undocumented)public DataFrameReader schema(String schemaString)
spark.read.schema("a INT, b STRING, c DOUBLE").csv("test.csv")
schemaString
- (undocumented)public Dataset<Row> table(String tableName)
DataFrame
. If it's a table, it must support batch
reading and the returned DataFrame is the batch scan query plan of this table. If it's a view,
the returned DataFrame is simply the query plan of the view, which can either be a batch or
streaming query plan.
tableName
- is either a qualified or unqualified name that designates a table or view.
If a database is specified, it identifies the table/view from the database.
Otherwise, it first attempts to find a temporary view with the given name
and then match the table/view from the current database.
Note that, the global temporary view database is also valid here.public Dataset<Row> text(String... paths)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
The text files must be encoded as UTF-8.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.read.text("/path/to/spark/README.md")
// Java:
spark.read().text("/path/to/spark/README.md")
You can set the following text-specific option(s) for reading text files:
wholetext
(default false
): If true, read a file as a single row and not split by "\n".
lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- input pathspublic Dataset<Row> text(String path)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. See the documentation on
the other overloaded text()
method for more details.
path
- (undocumented)public Dataset<Row> text(scala.collection.Seq<String> paths)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
The text files must be encoded as UTF-8.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.read.text("/path/to/spark/README.md")
// Java:
spark.read().text("/path/to/spark/README.md")
You can set the following text-specific option(s) for reading text files:
wholetext
(default false
): If true, read a file as a single row and not split by "\n".
lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.modifiedBefore
(batch only): an optional timestamp to only include files with
modification times occurring before the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)modifiedAfter
(batch only): an optional timestamp to only include files with
modification times occurring after the specified Time. The provided timestamp
must be in the following form: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypaths
- input pathspublic Dataset<String> textFile(String... paths)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
The text files must be encoded as UTF-8.
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.read.textFile("/path/to/spark/README.md")
// Java:
spark.read().textFile("/path/to/spark/README.md")
You can set the text-specific options as specified in DataFrameReader.text
.
paths
- input pathpublic Dataset<String> textFile(String path)
Dataset
of String. See the documentation on the
other overloaded textFile()
method for more details.path
- (undocumented)public Dataset<String> textFile(scala.collection.Seq<String> paths)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
The text files must be encoded as UTF-8.
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.read.textFile("/path/to/spark/README.md")
// Java:
spark.read().textFile("/path/to/spark/README.md")
You can set the text-specific options as specified in DataFrameReader.text
.
paths
- input path