public class KMeans extends java.lang.Object implements scala.Serializable, Logging
This is an iterative algorithm that will make multiple passes over the data, so any RDDs given to it should be cached by the user.
Constructor and Description |
---|
KMeans()
Constructs a KMeans instance with default parameters: {k: 2, maxIterations: 20, runs: 1,
initializationMode: "k-means||", initializationSteps: 5, epsilon: 1e-4, seed: random}.
|
Modifier and Type | Method and Description |
---|---|
double |
getEpsilon()
The distance threshold within which we've consider centers to have converged.
|
java.lang.String |
getInitializationMode()
The initialization algorithm.
|
int |
getInitializationSteps()
Number of steps for the k-means|| initialization mode
|
int |
getK()
Number of clusters to create (k).
|
int |
getMaxIterations()
Maximum number of iterations to run.
|
int |
getRuns()
:: Experimental ::
Number of runs of the algorithm to execute in parallel.
|
long |
getSeed()
The random seed for cluster initialization.
|
static java.lang.String |
K_MEANS_PARALLEL() |
static java.lang.String |
RANDOM() |
KMeansModel |
run(RDD<Vector> data)
Train a K-means model on the given set of points;
data should be cached for high
performance, because this is an iterative algorithm. |
KMeans |
setEpsilon(double epsilon)
Set the distance threshold within which we've consider centers to have converged.
|
KMeans |
setInitializationMode(java.lang.String initializationMode)
Set the initialization algorithm.
|
KMeans |
setInitializationSteps(int initializationSteps)
Set the number of steps for the k-means|| initialization mode.
|
KMeans |
setInitialModel(KMeansModel model)
Set the initial starting point, bypassing the random initialization or k-means||
The condition model.k == this.k must be met, failure results
in an IllegalArgumentException.
|
KMeans |
setK(int k)
Set the number of clusters to create (k).
|
KMeans |
setMaxIterations(int maxIterations)
Set maximum number of iterations to run.
|
KMeans |
setRuns(int runs)
:: Experimental ::
Set the number of runs of the algorithm to execute in parallel.
|
KMeans |
setSeed(long seed)
Set the random seed for cluster initialization.
|
static KMeansModel |
train(RDD<Vector> data,
int k,
int maxIterations)
Trains a k-means model using specified parameters and the default values for unspecified.
|
static KMeansModel |
train(RDD<Vector> data,
int k,
int maxIterations,
int runs)
Trains a k-means model using specified parameters and the default values for unspecified.
|
static KMeansModel |
train(RDD<Vector> data,
int k,
int maxIterations,
int runs,
java.lang.String initializationMode)
Trains a k-means model using the given set of parameters.
|
static KMeansModel |
train(RDD<Vector> data,
int k,
int maxIterations,
int runs,
java.lang.String initializationMode,
long seed)
Trains a k-means model using the given set of parameters.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public KMeans()
public static java.lang.String RANDOM()
public static java.lang.String K_MEANS_PARALLEL()
public static KMeansModel train(RDD<Vector> data, int k, int maxIterations, int runs, java.lang.String initializationMode, long seed)
data
- training points stored as RDD[Vector]
k
- number of clustersmaxIterations
- max number of iterationsruns
- number of parallel runs, defaults to 1. The best model is returned.initializationMode
- initialization model, either "random" or "k-means||" (default).seed
- random seed value for cluster initializationpublic static KMeansModel train(RDD<Vector> data, int k, int maxIterations, int runs, java.lang.String initializationMode)
data
- training points stored as RDD[Vector]
k
- number of clustersmaxIterations
- max number of iterationsruns
- number of parallel runs, defaults to 1. The best model is returned.initializationMode
- initialization model, either "random" or "k-means||" (default).public static KMeansModel train(RDD<Vector> data, int k, int maxIterations)
data
- (undocumented)k
- (undocumented)maxIterations
- (undocumented)public static KMeansModel train(RDD<Vector> data, int k, int maxIterations, int runs)
data
- (undocumented)k
- (undocumented)maxIterations
- (undocumented)runs
- (undocumented)public int getK()
public KMeans setK(int k)
k
- (undocumented)public int getMaxIterations()
public KMeans setMaxIterations(int maxIterations)
maxIterations
- (undocumented)public java.lang.String getInitializationMode()
public KMeans setInitializationMode(java.lang.String initializationMode)
initializationMode
- (undocumented)public int getRuns()
public KMeans setRuns(int runs)
runs
- (undocumented)public int getInitializationSteps()
public KMeans setInitializationSteps(int initializationSteps)
initializationSteps
- (undocumented)public double getEpsilon()
public KMeans setEpsilon(double epsilon)
epsilon
- (undocumented)public long getSeed()
public KMeans setSeed(long seed)
seed
- (undocumented)public KMeans setInitialModel(KMeansModel model)
model
- (undocumented)public KMeansModel run(RDD<Vector> data)
data
should be cached for high
performance, because this is an iterative algorithm.data
- (undocumented)