org.apache.spark.mllib.rdd

RDDFunctions

class RDDFunctions[T] extends Serializable

Machine learning specific RDD functions.

Annotations
@DeveloperApi()
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. RDDFunctions
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RDDFunctions(self: RDD[T])(implicit arg0: ClassTag[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. def sliding(windowSize: Int): RDD[Array[T]]

    Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding window over them.

    Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding window over them. The ordering is first based on the partition index and then the ordering of items within each partition. This is similar to sliding in Scala collections, except that it becomes an empty RDD if the window size is greater than the total number of items. It needs to trigger a Spark job if the parent RDD has more than one partitions and the window size is greater than 1.

  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def treeAggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U, depth: Int = 2)(implicit arg0: ClassTag[U]): U

    Aggregates the elements of this RDD in a multi-level tree pattern.

    Aggregates the elements of this RDD in a multi-level tree pattern.

    depth

    suggested depth of the tree (default: 2)

    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use RDD.treeAggregate instead.

    See also

    org.apache.spark.rdd.RDD#treeAggregate

  2. def treeReduce(f: (T, T) ⇒ T, depth: Int = 2): T

    Reduces the elements of this RDD in a multi-level tree pattern.

    Reduces the elements of this RDD in a multi-level tree pattern.

    depth

    suggested depth of the tree (default: 2)

    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use RDD.treeReduce instead.

    See also

    org.apache.spark.rdd.RDD#treeReduce

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped